1,549 research outputs found

    Effect of Sr substitution on superconductivity in Hg2(Ba1-ySry)2YCu2O8-d (part2): bond valence sum approach of the hole distribution

    Full text link
    The effects of Sr substitution on superconductivity, and more particulary the changes induced in the hole doping mechanism, were investigated in Hg2(Ba1-ySry)2YCu2O8-d by a "bond valence sum" analysis with Sr content from y = 0.0 to y = 1.0. A comparison with CuBa2YCu2O7-d and Cu2Ba2YCu2O8 systems suggests a possible explanation of the Tc enhancement from 0 K for y = 0.0 to 42 K for y = 1.0. The charge distribution among atoms of the unit cell was determined from the refined structure, for y = 0.0 to 1.0. It shows a charge transfer to the superconducting CuO2 plane via two doping channels pi(1) and pi(2), i.e. through O2(apical)-Cu and Ba/Sr-O1 bonds respectively.Comment: 13 pages, 5 figures, accepted for publication in Journal of Physics: Condensed Matte

    Orbital ordering promotes weakly-interacting S=1/2 dimers in the triangular lattice compound Sr3Cr2O8

    Full text link
    The weakly interacting S=1/2 dimers system Sr3Cr2O8 has been investigated by powder neutron diffraction and inelastic neutron scattering. Our data reveal a structural phase transition below room temperature corresponding to an antiferro-orbital ordering with nearly 90 degrees arrangement of the occupied 3z^2-r^2 d-orbital. This configuration leads to a drastic reduction of the inter-dimer exchange energies with respect to the high temperature orbital-disorder state, as shown by a spin-dimer analysis of the super-superexchange interactions performed using the Extended Huckel Tight Binding method. Inelastic neutron scattering reveals the presence of a quasi non-dispersive magnetic excitation at 5.4 meV, in agreement with the picture of weakly-interacting dimers

    Evolution of magneto-orbital order upon B-site electron doping in Na1-xCaxMn7O12 quadruple perovskite manganites

    Full text link
    We present the discovery and refinement by neutron powder diffraction of a new magnetic phase in the Na1-xCaxMn7O12 quadruple perovskite phase diagram, which is the incommensurate analogue of the well-known pseudo-CE phase of the simple perovskite manganites. We demonstrate that incommensurate magnetic order arises in quadruple perovskites due to the exchange interactions between A and B sites. Furthermore, by constructing a simple mean field Heisenberg exchange model that generically describes both simple and quadruple perovskite systems, we show that this new magnetic phase unifies a picture of the interplay between charge, magnetic and orbital ordering across a wide range of compounds.Comment: Accepted for publication in Physical Review Letter

    Electrical switching of magnetic polarity in a multiferroic BiFeO3 device at room temperature

    Full text link
    We have directly imaged reversible electrical switching of the cycloidal rotation direction (magnetic polarity) in a (111)-BiFeO3 epitaxial-film device at room temperature by non-resonant x-ray magnetic scattering. Consistent with previous reports, fully relaxed (111)-BiFeO3 epitaxial films consisting of a single ferroelectric domain were found to comprise a sub-micron-scale mosaic of magneto-elastic domains, all sharing a common direction of the magnetic polarity, which was found to switch reversibly upon reversal of the ferroelectric polarization without any measurable change of the magneto-elastic domain population. A real-space polarimetry map of our device clearly distinguished between regions of the sample electrically addressed into the two magnetic states with a resolution of a few tens of micron. Contrary to the general belief that the magneto-electric coupling in BiFeO3 is weak, we find that electrical switching has a dramatic effect on the magnetic structure, with the magnetic moments rotating on average by 90 degrees at every cycle.Comment: 6 pages, 5 figures; corrected figure

    Universal magneto-orbital ordering in the divalent AA-site quadruple perovskite manganites AAMn7_7O12_{12} (AA = Ca, Sr, Cd, and Pb)

    Full text link
    Through analysis of variable temperature neutron powder diffraction data, we present solutions for the magnetic structures of SrMn7_7O12_{12}, CdMn7_7O12_{12}, and PbMn7_7O12_{12} in all long-range ordered phases. The three compounds were found to have magnetic structures analogous to that reported for CaMn7_7O12_{12}. They all feature a higher temperature lock-in phase with \emph{commensurate} magneto-orbital coupling, and a delocked, multi-\textbf{k} magnetic ground state where \emph{incommensurate} magneto-orbital coupling gives rise to a constant-moment magnetic helix with modulated spin helicity. CdMn7_7O12_{12} represents a special case in which the orbital modulation is commensurate with the crystal lattice and involves stacking of fully and partially polarized orbital states. Our results provide a robust confirmation of the phenomenological model for magneto-orbital coupling previously presented for CaMn7_7O12_{12}. Furthermore, we show that the model is universal to the A2+A^{2+} quadruple perovskite manganites synthesised to date, and that it is tunable by selection of the AA-site ionic radius

    Infrared absorption from Charge Density Waves in magnetic manganites

    Full text link
    The infrared absorption of charge density waves coupled to a magnetic background is first observed in two manganites La{1-x}Ca{x}MnO{3} with x = 0.5 and x = 0.67. In both cases a BCS-like gap 2 Delta (T), which for x=0.5 follows the hysteretic ferro-antiferromagnetic transition, fully opens at a finite T{0} < T{Neel}, with 2 Delta(T{0})/kT{c} close to 5. These results may also explain the unusual coexistence of charge ordering and ferromagnetism in La{0.5}Ca{0.5}MnO{3}.Comment: File revtex + 3 figs. in epsf. To appear on Phys. Rev. Let

    Time-dependent local Green's operator and its applications to manganites

    Full text link
    An algorithm is presented to calculate the electronic local time-dependent Green's operator for manganites-related hamiltonians. This algorithm is proved to scale with the number of states NN in the Hilbert-space to the 1.55 power, is able of parallel implementation, and outperforms computationally the Exact Diagonalization (ED) method for clusters larger than 64 sites (using parallelization). This method together with the Monte Carlo (MC) technique is used to derive new results for the manganites phase diagram for the spatial dimension D=3 and half-filling on a 12x12x12 cluster (3456 orbitals). We obtain as a function of an insulating parameter, the sequence of ground states given by: ferromagnetic (FM), antiferromagnetic AF-type A, AF-type CE, dimer and AF-type G, which are in remarkable agreement with experimental results.Comment: 9 pages, 11 figure

    Magnetoelectric domains and their switching mechanism in a Y-type hexaferrite

    Full text link
    By employing resonant X-ray microdiffraction, we image the magnetisation and magnetic polarity domains of the Y-type hexaferrite Ba0.5_{0.5}Sr1.5_{1.5}Mg2_2Fe12_{12}O22_{22}. We show that the magnetic polarity domain structure can be controlled by both magnetic and electric fields, and that full inversion of these domains can be achieved simply by reversal of an applied magnetic field in the absence of an electric field bias. Furthermore, we demonstrate that the diffraction intensity measured in different X-ray polarisation channels cannot be reproduced by the accepted model for the polar magnetic structure, known as the 2-fan transverse conical (TC) model. We propose a modification to this model, which achieves good quantitative agreement with all of our data. We show that the deviations from the TC model are large, and may be the result of an internal magnetic chirality, most likely inherited from the parent helical (non-polar) phase.Comment: 9 figure

    Polarization memory in the nonpolar magnetic ground state of multiferroic CuFeO2

    Full text link
    We investigate polarization memory effects in single-crystal CuFeO2, which has a magnetically-induced ferroelectric phase at low temperatures and applied B fields between 7.5 and 13 T. Following electrical poling of the ferroelectric phase, we find that the nonpolar collinear antiferromagnetic ground state at B = 0 T retains a strong memory of the polarization magnitude and direction, such that upon re-entering the ferroelectric phase a net polarization of comparable magnitude to the initial polarization is recovered in the absence of external bias. This memory effect is very robust: in pulsed-magnetic-field measurements, several pulses into the ferroelectric phase with reverse bias are required to switch the polarization direction, with significant switching only seen after the system is driven out of the ferroelectric phase and ground state either magnetically (by application of B > 13 T) or thermally. The memory effect is also largely insensitive to the magnetoelastic domain composition, since no change in the memory effect is observed for a sample driven into a single-domain state by application of stress in the [1-10] direction. On the basis of Monte Carlo simulations of the ground state spin configurations, we propose that the memory effect is due to the existence of helical domain walls within the nonpolar collinear antiferromagnetic ground state, which would retain the helicity of the polar phase for certain magnetothermal histories.Comment: 9 pages, 7 figure
    corecore